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Geometrical Effects in Gyrotron Coaxial

Cavities: Application to Mode Selection

J. J. Barroso, P. J. Castro, and R. A. Corr6a

Abstract— A study of the electrodynamical properties of gyrotron
coaxial cavities using a conical inner rod has been conducted and
compared with cold-test measurements on TE modes over the frequency
range 11-14 GHz. On the basis of a geometrical design criterion for
resomnce of the uormal modes, it has been demonstrated that the mode
spectrum associated with a purpose-built test coaxial cavity is significantly
less dense than that for the empty cavity without the coaxial insert.

I. lNTRODUcTION

Recently, overrnoded coaxial cavities have found applications in

high-power gyrotrons [1] where a straight cylindrical circular inner

rod is used to shift the resonant frequencies of competing modes. We

examine here the electrodynamical properties of cylindrical coaxial

cavities using a conical inner rod on the basis of a geometrical

criterion for resonance of the eigenmodes. The modeling of a coaxial

cavity, along with experimental results, demonstrates that some TE

modes in the range 11–14 GHz are suppressed as a result of the

action of the conical coaxial insert.

The remainder of this paper is organized as follows: Section

II outlines the formalism adopted for analyzing gyrotron coaxial

cavities, whereas, the effects of the inner conductor geometry upon

the selective properties of the cavity are explored in Section III.

Calculated and measured results are discussed in Section IV, and,

finally, Section V contains the conclusions of our work.

II. NORMALMODES IN COAXIALGYROTRONCAVITIES

We shall consider the open coaxial cavity type as depicted in Fig.
1. The inner conductor is a conical rod, whereas, the outer cylinder
consists of a weakly irregular waveguide with a uniform cylindrical
mid-section joined to two linear tapers. For good conductors, the
resonant frequencies are close to the cutoff frequencies w~ = c,x~P/ b,

where c is the speed of light, b is the outer waveguide radius, and ,X~P
denotes the p-th nontrivial root of the Bessel-Neumann combination

z?t(xmP)Xn(MnP/o– &(xl?2P/wL(xmP) = 0. (1)

The parameter C = b/a is defined as the ratio of the inside radius of
the outer cylinder to the radius of the inner one. For large vahtes of
C, the quantity XWPapproaches the root of the equation J~ (X~P) =
O, which determines the eigenfrequencies of the hollow cylindrical
resonator. The dependence of root X~P on parameter C is shown in
Fig. 2, where one can see the distinctive behavior of the x~, (C)
curve for the various classes of modes. In particular, for p = 3
volume modes, the roots x~P and, in consequence, the corresponding
eigenfrequencies rapidly increase as C ~ 2.

III. MODE SELECTIONFROM GEOMETRICALEFFECTS

The effects of the inner conductor geometry upon the cavity
selective properties can be explained by considering an equivalent
empty resonator so that a given normal mode has the same resonant
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F1.g. 1. Schematic diagram of the coaxial resonator along with geometric
ptiameters.
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Fig. 2. Dependence of x ~P on parameter C for some TE modes. The right
vertical scale gives the cutoff frequency~c = CX~P /2rrbo for bo = 3.36 cm.

frequency and diffractive Q-factor in both resonators. In this context,

a coaxial resonator turns out to be equivalent to an empty one with
a longitudinal profile [2], [3]

(2)

where ~ denotes the average value of C over the interval O < z <
dl + dZ (Fig. 1). Hence, if the derivative d~/dC’ is negative (positive)
at C = ~ and Oc > 0 (O. < O), the input section of the equivalent
empty resonator is a truncated cone narrowing to the cavity output
provided the following relation

~lTl tan 9,

1–T > tan18Cl
(3)

holds, where T s (C/X) (d~/dc) I~. As a result, modes satisfying

(3) do not suffer a total reflection on the left side of the main resonant
mid section, and, in consequence, cannot resonate. By means of the
ensuing set of curves as displayed in Fig. 3, the resonance condition
(3) is now used to examine the selective properties of a 3.2-design C
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TABLE I
MEASUREDAND CALCULATED VALUES OF RESONANT FREQUENCIES

AND QT FACTORSFOR FUNDAMENTALTE MODES
——— .— .—.—

ctilculaterl measured —

—.—...— ——-
mode QT ‘f+ ;::-; 0- ‘)

Q,

~

3,2 11.1487 1052 11.1408 954
7,1 12.1835 1324 12.1641 1217
4,2 13.1091 1558 13,0917 1381
8,1 13.6984 1655 13.6762 1373
2,3 13.7073 1905 13.7082 1715
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Fig. 3. CIT1/(1 – T) as function of parameter C where T ~
(C/x) (dx/dC). Only modes from Fig. 2 with negative dx/dC slope
in the C-interval 3.24.0 have been included in this plot.

cavity. In that cavity, the geometric parameters 6’,= 0.8°, Oo= 3.0,
dl = 10.50 cm, dz = d3 = 15.75 cm, and b. = 3.36 cm define the

outer waveguide with a, = 0.68 cm and OC= 1.00 determining the
conical inner rod. Thus, we conclude from Fig. 3 that the circularly
symmetric modes (TEO1, TE02, and TE03 ) in addition to the volume
mode TEI,3 are all suppressed, as (3) does apply to such modes.
Note in Fig. 4(a), however, that the mid-section of the equivalent
empty resonator for the TEz,3 mode is a truncated cone that narrows
to the output section, as the corresponding x(C) curve (Fig. 2) has
a negative slope around C = 3.2. This yields an exceedingly high
diffractive Q~ factor (> 1.0 x106) for the tlmdamental TE2,3,1 mode,
with calculations indicating intolerably high Q~ factors (> 1.0x 105)
for higher axial order modes TE2,3,q with g ~ 2. To circumvent
such a drawback posed by the fully-conical inner rod, we resort to
considering a cylindrical coaxiaf insert with a constant radius along
the output and mid-sections, while keeping a conical shape in the
input section. On adopting this geometry for the inner rod, where
Oc = 1.OO,a, = 0.68 cm, and a(z ~ dl) = 0.87 cm such that
d = 3.9, we can now see in Fig. 4(b) that the mid-section for the
equivalent empty resonator is a uniform circular cylinder with radius
bo = 3.63 cm. This gives for the TEz,3,1 mode a diffractive Q-factor
QD = 2140 nearly equal to that in the empty cavity. Moreover,

as displayed in Fig. 3, the circuhmly symmetric modes as well as
the volume TE1,3 mode remain still suppressed in this new cavity
configuration with ~ = 3.9.
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Fig. 4. Longitudinal profiles for the coaxial (solid line) and equivalent empty
resonators (dashed tine) for TEz,3 mode with (a) full conical and (b) partially
conical inner rods.

IV. EXPERIMENTAL INVESTIGATION

The selective properties of the 3.9-design C’ coaxiaf cavity were

experimentally investigated using an HP8510B vector network rm-

alyzer, which includes an integrated synthesized source. TE modes

were excited by means of a standard WR-90 rectangular waveguide
feeding a 7.0-mm-diameter coupling hole drilled through the center
of the resonator mid-section. To collect the power reradiated by
the resonator, we used a horn gain antenna that was properly
positioned to maximize the signaf intensity and to avoid any possible
distortions in the resonance curve. The Q-factor measured is the total

QT = Q~Qn/(Q~ + Q~ ) as determined directly from frequency
readings at the half-power points on the detected spectrum. The cavity

external structure is a single electroformed copper piece, for which

an electrical resistivity of ub = 3.8 x 107 S/m has been assumed,
whereas, the inner rod is made from aluminum (u. = 2.5x 107 S,/m).

To verify the findings anticipated by theory, resonant frequency
and QZI-factor measurements were performed in the frequency range
11–14 GHz. Experimental results are presented in Table I, which
confirms the TE1 ,3— and TEO,q—mode suppression. In fact, if the
TEo,z and TE1,8 modes were present, their corresponding eigenfre-
quencies would be around 12.1 GHz and 12.5 GHz according to Fig.
2. However, after scanning the 11–14-GHz frequency range, no such
modes were detected. In this way, the TE7, 1 mode becomes well
isolated from its closest competitors by a frequency spacing of 1.0

GHz.
Finally, it should be noted in Table I that measured QT values are

typically below the calculated ones by a 10% factor, except for the
surface TE7, 1 and TE8, 1 modes. This arises from the fact that the
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corresponding angular wavelength (nbo /s-n) of these modes is on the
order of the coupling hole size, which thus provides an extra energy
loss mechanism for such surfaces modes.

V. CONCLUSION

A study of open coaxial resonators was addressed giving emphasis
to the influence of the inner conductor geometry on the cavity
selective properties. Making use of a geometrical design criterion
for resonance of TE eigenmodes, a cavity was constructed and cold-

tested in the frequency range 11–14 GHz. In agreement with theory, it
was then demonstrated that some modes were effectively suppressed
when introducing a coaxial insert of suitable shape into the empty
cavity.
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Condition for Distortionless Transmission Line
with a Nonuniform Characteristic Impedance

Jonas Lundstedt

Abstract-The well-known condition for distortiordess signal propa-
gation on a dissipative transmission line with constant impedance is
generalized to the case of nonuniform impedance. The result is based
on a time-domain wave-splitting formulation of the Telegraphkt’s equa-
tions. It is shown that au appropriate choice of the resistance and
the conductance can eIiminate the distortion caused by the varying
characteristic impedance. A nonuniform transmission line that satisfies
the given conditiou is dktortionless in both directions, but reflectionless
for signals propagating in one direction orrly.

I. INTRODUCTION

O. Heaviside derived the well-known condition for distortionless
lines that states that the resistance and the conductance can be
matched to each other so that the distortion vanishes on transmission
lines with constant impedance. Matching of two lines with different
impedance with a transmission line taper is usually done with a

lossless line in order to preserve the energy of the signal at the cost
of a limited bandwidth. We present a condition “for distortionless
nonum~orm transmission lines. It is shown that it is possible to
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Fig. 1. The nonuniform and lossy transmission line between .z = O and
z = 1 is imbedded between two uniform and lossless transmission lines.

match the resistance and conductance to the slope of the impedance
so that the signal propagates undistorted with no reflections in one

direction and undistorted but with reflections in the other direction.
One consequence is that it is possible to design a perfect impedance
match if energy loss is acceptable. The idea to this distortionless

condition has evolved from the work in [1],

II. THE TELEGRAPHIST’SEQUATIONSAND THE WAVE-SPLITTING

Consider a nonuniform LCRG transmission line with length 1,
which is imbedded between two uniform and lossless LC transmission
lines. Incident signals from the left and right side of the uniform line
are denoted V’+ and V’ –, respectively. The signal generators are

assumed to be impedance matched. At z = O, a left-moving wave,

V~–, is due to transmission of the incident signal V’– and reflection
of V’+. The corresponding right-moving wave at z = 1 is denoted
V*+

For a TEM transmission line, the voltage V and the current 1
satisfy the Telegraphist’s equations

[1o V(z, t)
z 1(2-, t)

[

o –l?(r) – L(.) $——
–G(z) –C(z): o 1
[1.V(7+t) ‘“
1(x, t)

(1)

where L(x), C(T), R(z), and G(z) are respectively, the inductance,
capacitance, series resistance, and shunt conductance of the line. The
local characteristic impedance, Z(z), and local wavefront speed,
C(Z), are defined as

1 rL(x)z(z)= — —Y(x)= c(x)‘ c(x) =
& ‘ ‘2)

On a Iossless and homogeneous transmission line, the solution to (1)
can be decomposed into two parts, V+ and V –, which represent
right-moving and left-moving waves, respectively

{

‘v-+(?+t) = V+(t – x/c) = zI+(t – %/.)
(3)

V--- (Z, t) = V-(t + z/c) == –Zr (t+ z/c)

where 1+ and 1– are the currents that correspond to V+ and V–,
respectively. The relation between V+, V– and the total voltage and
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