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Geometrical Effects in Gyrotron Coaxial
Cavities: Application to Mode Selection

I. I. Barroso, P. J. Castro, and R. A. Corréa

Abstract— A study of the electrodynamical properties of gyrotron
coaxial cavities using a conical inner rod has been conducted and
compared with cold-test measurements on TE modes over the frequency
range 11-14 GHz. On the basis of a geometrical design criterion for
resonance of the normal modes, it has been demonstrated that the mode
spectrum associated with a purpose-built test coaxial cavity is significantly
less dense than that for the empty cavity without the coaxial insert.

I. INTRODUCTION

Recently, overmoded coaxial cavities have found applications in
high-power gyrotrons [1] where a straight cylindrical circular inner
rod is used to shift the resonant frequencies of competing modes. We
examine here the electrodynamical properties of cylindrical coaxial
cavities using a conical inner rod on the basis of a geometrical
criterion for resonance of the eigenmodes. The modeling of a coaxial
cavity, along with experimental results, demonstrates that some TE
modes in the range 11-14 GHz are suppressed as a result of the
action of the conical coaxial insert.

The remainder of this paper is organized as follows: Section
1I outlines the formalism adopted for analyzing gyrotron coaxial
cavities, whereas, the effects of the inner conductor geometry upon
the selective properties of the cavity are explored in Section IIL
Calculated and measured results are discussed in Section IV, and,
finally, Section V contains the conclusions of our work.

II. NorMAL MODES IN COAXIAL GYROTRON CAVITIES

‘We shall consider the open coaxial cavity type as depicted in Fig.
1. The inner conductor is a conical rod, whereas, the outer cylinder
consists of a weakly irregular waveguide with a uniform cylindrical
mid-section joined to two linear tapers. For good conductors, the
resonant frequencies are close to the cutoff frequencies we = cxmp/b,
where c¢ is the speed of light, b is the outer waveguide radius, and Xmyp
denotes the p-th nontrivial root of the Bessel-Neumann combination

J;n(me)N;n(me/C) - Jm (me/C)N;n(szJ) =0. (D

The parameter C' = b/a is defined as the ratio of the inside radius of
the outer cylinder to the radius of the inner one. For large values of
C, the quantity X, approaches the root of the equation J,,{Xmp) =
0, which determines the eigenfrequencies of the hollow cylindrical
resonator. The dependence of root x ., on parameter C' is shown in
Fig. 2, where one can see the distinctive behavior of the xmp(C)
curve for the various classes of modes. In particular, for p = 3
volume modes, the roots X, and, in consequence, the corresponding
eigenfrequencies rapidly increase as C — 2.

III. MODE SELECTION FROM GEOMETRICAL EFFECTS

The effects of the inner conductor geometry upon the cavity
selective properties can be explained by considering an equivalent
empty resonator so that a given normal mode has the same resonant
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Fig. 1. Schematic diagram of the coaxial resonator along with geometric
parameters.
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Fig. 2. Dependence of Xxmyp on parameter C for some TE modes. The right
vertical scale gives the cutoff frequencyfe = cXmyp/27bo for b = 3.36 cm.

frequency and diffractive (J-factor in both resonators. In this context,
a coaxial resonator turns out to be equivalent to an empty one with
a longitudinal profile [2], [3]

Cd)L

el @

beq(2) = b(2) — (b(2) = Ca(’))
where C' denotes the average value of C over the interval 0 < z <
d1+d3 (Fig. 1). Hence, if the derivative dx /dC is negative (positive)
at C = C and . > 0 (6. < 0), the input section of the equivalent
empty resonator is a truncated cone narrowing to the cavity output

provided the following relation
ClT)
1-T

tané,
tan |90|

3

holds, where T' = (C/x)(dx/dc)|c- As a result, modes satisfying
(3) do not suffer a total reflection on the left side of the main resonant
mid section, and, in consequence, cannot resonate. By means of the
ensuing set of curves as displayed in Fig. 3, the resonance condition
(3) is now used to examine the selective properties of a 3.2-design C'
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TABLE I
MEASURED AND CALCULATED VALUES OF RESONANT FREQUENCIES
AND Q7 FACTORS FOR FUNDAMENTAL TE MODES

calculated measured
[ mode f Qr | (Fx20x107") | Qr
TEnp [GHz] (GHz]
3,2 11.1487 | 1052 11.1408 954
7,1 12.1835 | 1324 12.1641 1217
4,2 13.1091 | 1558 13.0917 1381
8,1 13.6984 | 1655 13.6762 1373
2,3 13.7073 | 1905 13.7082 1715
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Fig. 3. C|T|/(1 — T) as function of parameter C where T =

(C/x)(dx/dC). Only modes from Fig. 2 with negative dx/dC slope
in the C-interval 3.2-4.0 have been included in this plot.

cavity. In that cavity, the geometric parameters 6, = 0.8°, 4, = 3.0,
d1 = 10.50 cm, do = d3 = 15.75 cm, and by = 3.36 cm define the
outer waveguide with a, = 0.68 cm and 8. = 1.0° determining the
conical inner rod. Thus, we conclude from Fig. 3 that the circularly
symmetric modes (TEo1, TEg2, and TEg3) in addition to the volume
mode TE; 3 are all suppressed, as (3) does apply to such modes.
Note in Fig. 4(a), however, that the mid-section of the equivalent
empty resonator for the TEz 3 mode is a truncated cone that narrows
to the output section, as the corresponding x(C) curve (Fig. 2) has
a negative slope around C' = 3.2. This yields an exceedingly high
diffractive Q@ p factor (>1.0x10°) for the fundamental TE» 3 ; mode,
with calculations indicating intolerably high Qp factors (>1.0x 10%)
for higher axial order modes TEs 3, with ¢ > 2. To circumvent
such a drawback posed by the fully-conical inner rod, we resort to
considering a cylindrical coaxial insert with a constant radius along
the output and mid-sections, while keeping a conical shape in the
input section. On adopting this geometry for the inner rod, where
6. = 1.0°, a, = 0.68 cm, and a(z > d1) = 0.87 cm such that
¢ = 3.9, we can now see in Fig. 4(b) that the mid-section for the
equivalent empty resonator is a uniform circular cylinder with radius
bo = 3.63 cm. This gives for the TE2 3 ; mode a diffractive Q}-factor
®@p = 2140 nearly equal to that in the empty cavity. Moreover,
as displayed in Fig. 3, the circularly symmetric modes as well as
the volume TE; 3 mode remain still suppressed in this new cavity
configuration with C = 3.9,
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Fig. 4. Longitudinal profiles for the coaxial (solid line) and equivalent empty
resonators (dashed line) for TEz 3 mode with (a) full conical and (b) partially
conical inner rods.

IV. EXPERIMENTAL INVESTIGATION

The selective properties of the 3.9-design C coaxial cavity were
experimentally investigated using an HP8510B vector network an-
alyzer, which includes an integrated synthesized source. TE modes
were excited by means of a standard WR-90 rectangular waveguide
feeding a 7.0-mm-diameter coupling hole drilled through the center
of the resonator mid-section. To collect the power reradiated by
the resonator, we used a horn gain antenna that was properly
positioned to maximize the signal intensity and to avoid any possible
distortions in the resonance curve. The QQ-factor measured is the total
Qr = QpQa/(Qp + Qq) as determined directly from frequency
readings at the half-power points on the detected spectrum. The cavity
external structure is a single electroformed copper piece, for which
an electrical resistivity of o, = 3.8 x 107 S/m has been assumed,
whereas, the inner rod is made from aluminum (¢, = 2.5x10” S/m).

To verify the findings anticipated by theory, resonant frequency
and Qr-factor measurements were performed in the frequency range
11-14 GHz. Experimental results are presented in Table I, which
confirms the TE; 3— and TEg 2—mode suppression. In fact, if the
TEo,2 and TE; 3 modes were present, their corresponding eigenfre-
quencies would be around 12.1 GHz and 12.5 GHz according to Fig.
2. However, after scanning the 11-14-GHz frequency range, no such
modes were detected. In this way, the TE7 1 mode becomes well
isolated from its closest competitors by a frequency spacing of 1.0
GHz.

Finally, it should be noted in Table I that measured Q7 values are
typically below the calculated ones by a 10% factor, except for the
surface TE71 and TEs,; modes. This arises from the fact that the
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corresponding angular wavelength (b, /m) of these modes is on the
order of the coupling hole size, which thus provides an extra energy
loss mechanism for such surfaces modes.

V. CONCLUSION

A study of open coaxial resonators was addressed giving emphasis
to the influence of the inner conductor geometry on the cavity
selective properties. Making use of a geometrical design criterion
for resonance of TE eigenmodes, a cavity was constructed and cold-
tested in the frequency range 11-14 GHz. In agreement with theory, it
was then demonstrated that some modes were effectively suppressed
when introducing a coaxial insert of suitable shape into the empty
cavity.
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Condition for Distortionless Transmission Line
with a Nonuniform Characteristic Impedance

Jonas Lundstedt

Abstract—The well-known condition for distortionless signal propa-
gation on a dissipative transmission line with constant impedance is
generalized to the case of nonuniform impedance. The result is based
on a time-domain wave-splitting formulation of the Telegraphist’s equa-
tions. It is shown that an appropriate choice of the resistance and
the conductance can eliminate the distortion caused by the varying
characteristic impedance. A nonuniform transmission line that satisfies
the given condition is distortionless in both directions, but reflectionless
for signals propagating in one direction only.

I. INTRODUCTION

O. Heaviside derived the well-known condition for distortionless
lines that states that the resistance and the conductance can be
matched to each other so that the distortion vanishes on transmission
lines with constant impedance. Matching of two lines with different
impedance with a transmission line taper is usually done with a
lossless line in order to preserve the energy of the signal at the cost
of a limited bandwidth. We present a condition “for distortionless
nonuniform transmission lines. It is shown that it is possible to
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Fig. 1. The nonuniform and lossy transmission line between x = 0 and
x = [ is imbedded between two uniform and lossless transmission lines.

match the resistance and conductance to the slope of the impedance
so that the signal propagates undistorted with no reflections in one
direction and undistorted but with reflections in the other direction.
One consequence is that it is possible to design a perfect impedance
match if energy loss is acceptable. The idea to this distortionless
condition has evolved from the work in [1].

II. THE TELEGRAPHIST'S EQUATIONS AND THE WAVE-SPLITTING

Consider a nonuniform LCRG transmission line with length [,
which is imbedded between two uniform and lossless LC transmission
lines. Incident signals from the left and right side of the uniform line
are denoted V*" and V', respectively. The signal generators are
assumed to be impedance matched. At z = 0, a left-moving wave,
V*~, is due to transmission of the incident signal V'~ and reflection
of V**. The corresponding right-moving wave at z = [ is denoted
Vit

For a TEM transmission line, the voltage V' and the current I
satisfy the Telegraphist’s equations

J [V{z,t)
oz {I(x, t) }
_ 0 —R(z) - L(x) %
—G(z) - C() % 0
Viz,t)
s g

where L(z), C{(x), R(z), and G(=) are respectively, the inductance,
capacitance, series resistance, and shunt conductance of the line. The
local characteristic impedance, Z(z), and local wavefront speed,
c(z), are defined as

_ 1 _ L@ N S
2o =5 =\ ew @ e @

On a lossless and homogeneous transmission line, the solution to (1)
can be decomposed into two parts, V¥ and V=, which represent
right-moving and left-moving waves, respectively

{V"“(w,t) =Vtit—z/e)=ZI(t —z/c)
Vi, )=V~ (t+azfc)=—-ZI (t+=z/c)

3

where It and I~ are the currents that correspond to V¥ and V',
respectively. The relation between ¥+, V'~ and the total voltage and
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